

DIGITALIZING EXTRACTIVE INDUSTRIES

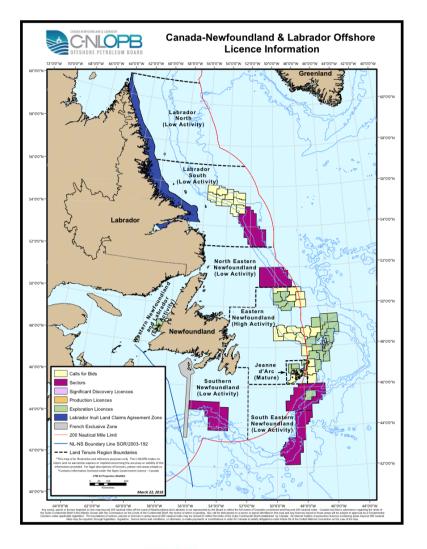
STATE-OF-THE-ART TO THE ART-OF-THE-POSSIBLE: OPPORTUNITIES AND CHALLENGES FOR CANADA

For background information see ...

https://munkschool.utoronto.ca/ipl/files/2017/11/IPL-White-Paper-2017-4.pdf

Extractive Industries: Profile

- Definition:
 - Mining
 - Oil & Gas
- Economic Importance to Canada of Natural Resources (majority mining and oil and gas)
 - 11% of Employment: Direct & Indirect
 - 16% of GDP
 - 38% of Non-Residential Capital Investment
 - \$25B in Government Revenues
 - \$201B in Export Revenues
 - \$582B in Publicly Traded Company Value

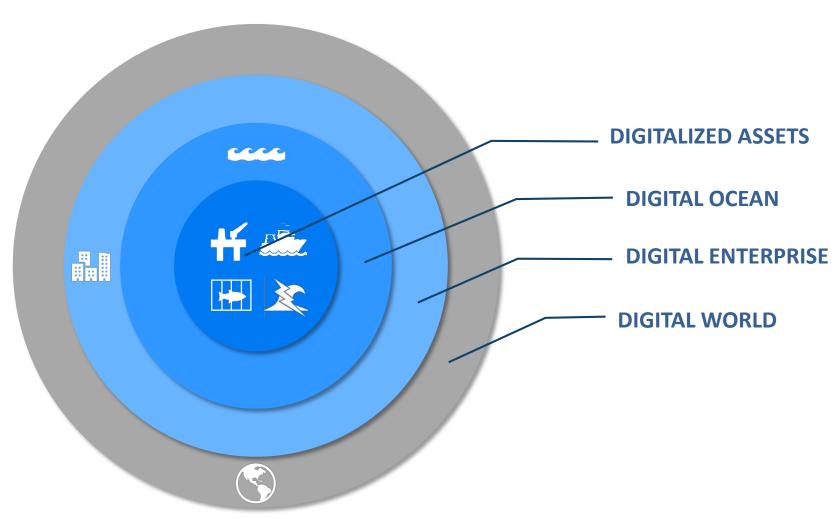

Extractive Industries: Common Issues

- Need to dig deeper or drill in more challenging environments
- Complexity of underlying economics (commodity price variability)
- Increased challenges from perceived and real entitlements of various stakeholders (need for win-win-win among communities, governments and industry, all with expectation for returns)
- Companies are **multinational in scope**, with global workforces, supply chains and consumers of their commodities
- Projects are regionally important (local employment and local supply and service sector)

Offshore Oil & Gas: Drivers of Digitalization

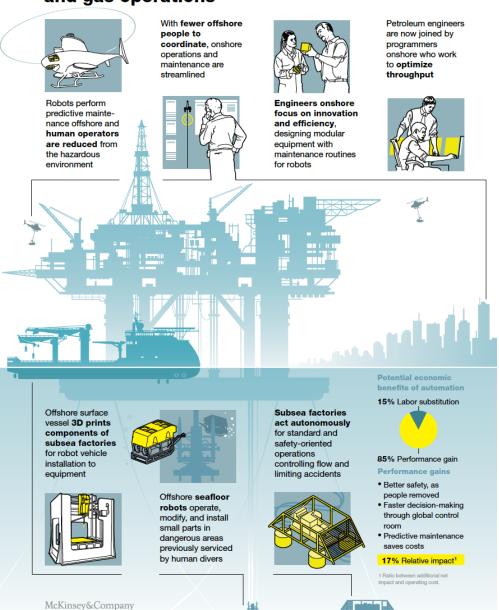
New Frontiers: deep water, remote reservoirs, harsh environments (e.g. Iceberg Alley)

- Real-time monitoring of the operating environment,
- Better operational decision-making;
- Lower operational risk;
- Positive impacts on health, safety, and environment; and
- Enhanced productivity



New Digital Technologies: Next 5 years and Beyond

- 3-5 Years
 - Big data/analytics, internet of things, and mobile devices
- 5-10 Years
 - Subsequent 5-year period is expected to see a focus on robotics/drones, artificial intelligence (AI), and wearable technology


Offshore Scenario

Hypothetical future state of automation in oil and gas operations

Offshore O&G Project of the Future

McKinsey&Company

MCKINSEY GLOBAL INSTITUTE

A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND PRODUCTIVITY

JANUARY 2017

Hypothetical future state of automation in oil and gas operations

Robots perform predictive maintenance offshore and human operators are reduced from the hazardous environment

With fewer offshore people to coordinate, onshore operations and maintenance are streamlined

Engineers onshore focus on innovation and efficiency, designing modular equipment with maintenance routines for robots

Petroleum engineers are now joined by programmers onshore who work to optimize throughput

Potential economic benefits of automation

Digital is much more than an

15% Labor substitution

85% Performance gain

Performance gains

- · Better safety, as people removed
- Faster decision-making through global control room
- Predictive maintenance saves costs

17% Relative impact1

1 Ratio between additional net impact and operating cost.

Offshore surface vessel 3D prints components of subsea factories for robot vehicle equipment

Offshore seafloor robots operate, modify, and install small parts in dangerous areas previously serviced by human divers

Subsea factories act autonomously for standard and operations limiting accidents

Performance gains · Better safety, as people removed Faster decision-making

85% Performance gain

Potential economic

benefits of automation 15% Labor substitution

through global control Predictive maintenance

saves costs

17% Relative impact1

1 Ratio between additional net impact and operating cost.

Benefits Agreements: Meeting Public Expectations

Canada-Newfoundland and Labrador Benefits Report 2016 Annual Report

Hibernia Management and Development Company Ltd.
Canada – Newfoundland and Labrador Benefits
Report
January 1 – December 31, 2016

Table of Contents

Section 1.0 – Introduction	
Section 2.0 – Employment	
Section 3.0 – Canadian-NL Content Estimates	
Section 4.0 – Contracting and Procurement	(
Section 5.0 – Training	
Section 6.0 – Research and Development (R&D)	
Section 7.0 – Education & Training Capacity and Infrastructure Activities	
Section 8.0 – Community Involvement	Ĺ
Section 9.0 – Diversity	ľ

Section 2.0 - Employment

As of December 31, 2016, a total of 2010 people were employed on Hibernia's operations, this includes the Hibernia Southern Extension (HSE) project, and 1094 were located offshore. This includes people employed with Hibernia and its contractors, of this 1718 or 85.5% were residents of Newfoundland and Labrador when hired, while another 192 or 9.5% were residents of other regions of Canada at the time of hire. All of these positions were located in Newfoundland and Labrador as of December 31, 2016. The number of females employed on Hibernia operations was 264 or approximately 13.1 % of the total workforce.

Automation nation: Which Canadian communities are most at risk?

RACHELLE YOUNGLAI>

ECONOMICS REPORTER PUBLISHED JUNE 8, 2017 UPDATED NOVEMBER 12, 2017

Nearly half of Canada's work activities could be automated, and the communities most susceptible tend to have smaller populations with an outsize share of manufacturing or natural resources jobs, according to a new report.

Thompson, Man.	47.41%	3,371	21% - Mining, 9,625 Quarrying, and Oil and Gas Extraction	
			Lloydminster, Alta.	47.65%
Fort St. John, B.C.	47.89%	7,215	14% - Mining, 20,645 Quarrying, and Oil and Gas Extraction	
			Estevan, Sask.	48.34%
Brooks, Alta.	49.16%	6,185	15% - Mining, 17,5 Quarrying, and Oil and Gas Extraction	30

THE GLOBE AND MAIL*

brookfield institute

23,450

10,135

17% - Mining,

Quarrying, and Oil and Gas Extraction

3,580

8,514

21% - Mining, Quarrying, and Oil and Gas

Extraction

 CANADA
 February 1, 2018 2:29 pm
 Updated: February 1, 2018 7:13 pm

Union outcry as automation eats up 400 oilsands jobs – and it's just the beginning

Suncor Gears Up To Roll Out Autonomous Vehicles, Cut Jobs

Markham Hislop Monday, February 12, 2018 - 10:40am

Suncor is building a fleet of 150 driverless trucks that will cut 400 jobs over the next six years

The energy company is already preparing for the switch by hiring its truck drivers on a temporary basis

AS IT HAPPENS

This Suncor worker says new fleet of driverless trucks will be a 'big hit' on Fort McMurray

CBC Radio · February 1

BUSINESS 01/31/2018 13:27 EST | Updated 01/31/2018 13:32 EST

Oilsands Giant Suncor Deploys Driverless Trucks, Plans 500 Layoffs

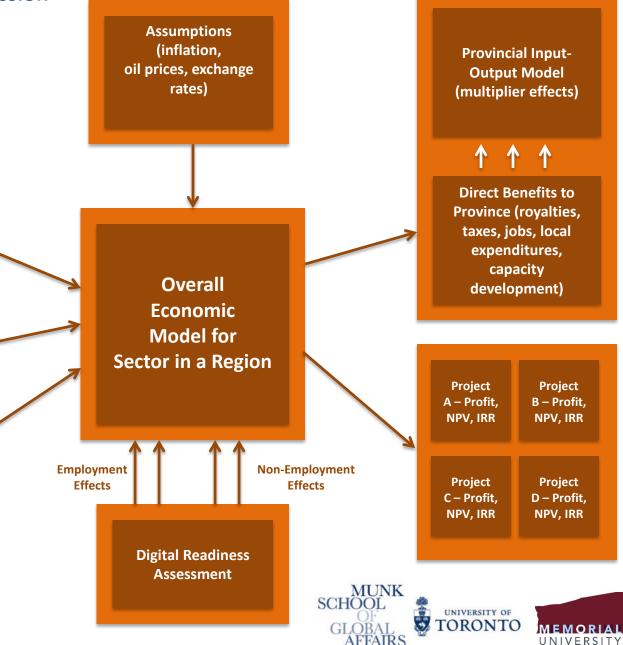
The company plans to build a fleet of 150 driverless trucks over the next six years.

Guardian sustainable business Fourth industrial revolution

Automated mining will cost jobs and tax income: it's time for governments to act

Study shows all governments need to play a greater role in restructuring mining sector to compensate for automation effects

"Automation's impact on the global mining sector is unlikely to be either smooth or homogenous. But one thing looks certain: if its claims to **shared value** are to remain valid into the future, it will have to ditch its 'colonial' model for a more **collaborative, confederate one** instead."


"Directing state revenues from mining to **economic diversification** is another possibility."

A framework for a discussion about digital ...

Process Analysis

Process

How it has been done?

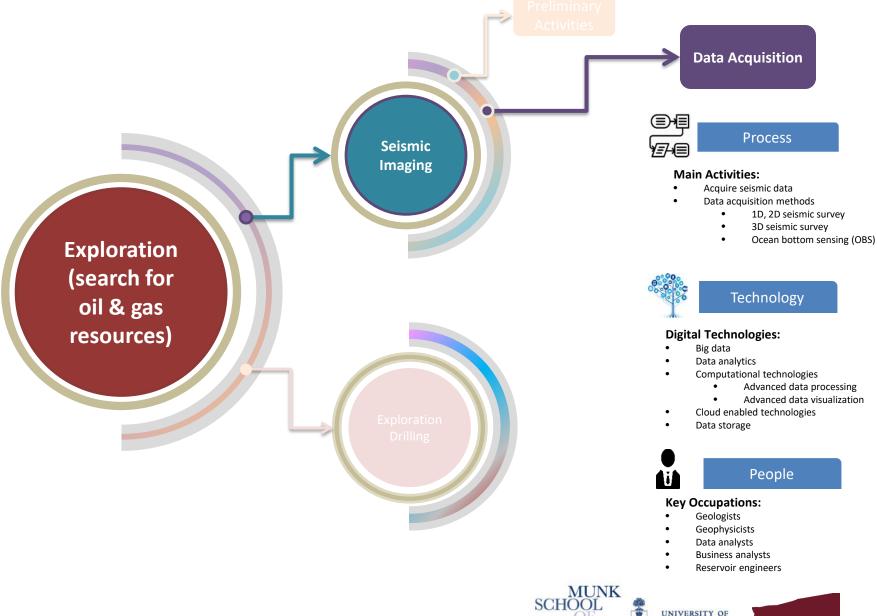
How could it be done?

Technology

What are the key techniques/technologies involved?

What technologies will be involved?

People


Who does what?

Who will do what?

Who decides?

PROJECT PARAMETERS

PROJECT A PARAMETERS Production Volume (MMBBLS) 800 Well Productivity (MMBBLS) 20 baseline was

0% baseline was 0%

Well Productivity (MMBBLS)

Drilling Cost per Well (US\$)

Injector/Producer Ratio

Enhanced Oil Recovery Factor

30 baseline was 30

\$70 baseline was \$70M

0.5 baseline was 0.5

0% baseline was 0%

Transport (US\$) \$1.50 baseline was \$1.50

Start PreCommercial (Year)

Start Exploration (Year)

Start Facilities (Year)

Start Drilling (Year)

Start Production (Year)

Start Production (Year)

0 baseline was 0

1 baseline was 1

5 baseline was 1

16 baseline was 16

Exploration Cost Adjust

Facilities Cost Adjust

Operations Cost Adjust

NL Wage/Salary Adjust

Abandonment Cost Adjust

Obsaeline was 0%

Dobuge baseline was 0%

Pre-Commercial Cost Adjust

CPI 2.0% baseline was 2%
Oil Price Inflation 2.0% baseline was 2%
Starting Oil Price (\$US/BBL) \$65 baseline was \$65

PROJECT B PARAMETERS

Production Volume (MMBBLS)

Well Productivity (MMBBLS)

Drilling Cost per Well (US\$)

Injector/Producer Ratio

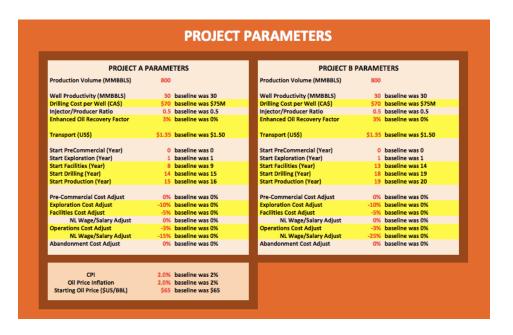
Enhanced Oil Recovery Factor

Transport (US\$)

Start PreCommercial (Year)

Start Fundamental (Year)

Description (Year)


1 baseline was 0

1 baseline was 1 Start Exploration (Year) 14 baseline was 14 Start Facilities (Year) Start Drilling (Year) 19 baseline was 19 20 baseline was 20 Start Production (Year) 0% baseline was 0% **Pre-Commercial Cost Adjust** 0% baseline was 0% **Exploration Cost Adjust Facilities Cost Adjust** 0% baseline was 0% 0% baseline was 0% **Operations Cost Adjust** 0% baseline was 0% NL Wage/Salary Adjust **Abandonment Cost Adjust** 0% baseline was 0%

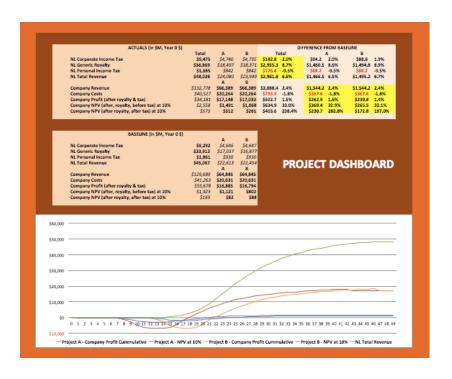
How might digitalization impact the project parameters?

Reduce drilling cost by 10%

Enhance oil recovery by 3%

Reduce time to production by 1 year

Reduce operating wages/salaries cost by 15%


Reduce operating cost by 3%

Reduce capital cost by 5%

Reduce exploration cost by 10%

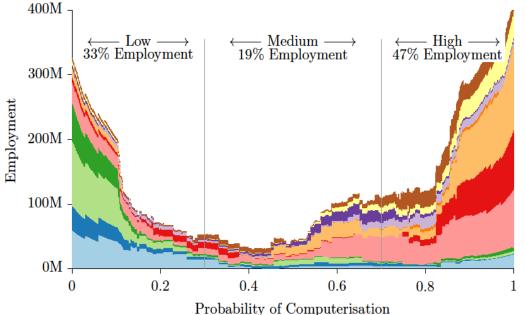
How might benefits of the digital effect be shared?

Industry revenues increase by ~\$3B

Industry costs reduce by ~\$750M

Industry NPV increases by ~\$650M

NL Royalty increases by ~\$3B

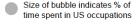

NL Corporate Income Tax increases by ~\$180M

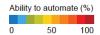
NL Personal Income Tax decreases by ~\$175M

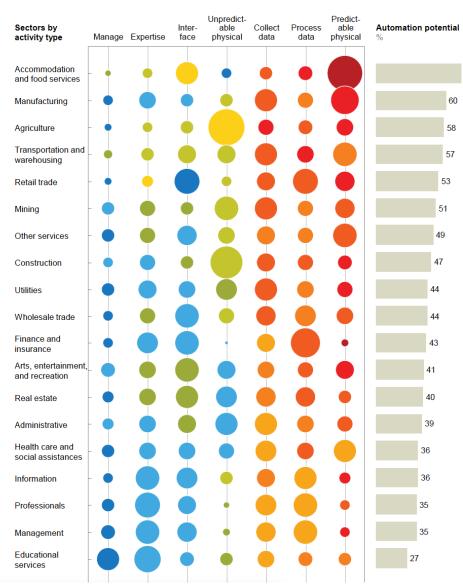
Overall NL Revenue increases by ~\$2.9B

The Future of Employment Carl Benedikt Frey & Michael Osborne

"According to our estimate, **47 percent** of total US employment is in the **high risk** category, meaning that associated occupations are **potentially automatable** over some unspecified number of years, **perhaps a decade or two**."


"It shall be noted that the **probability axis can be** seen as a rough timeline, where high probability occupations are likely to be substituted by computer capital relatively soon."


From Frey & Osborne, 2013



Technical potential for automation across sectors varies depending on mix of activity types

McKinsey&Company

MCKINSEY GLOBAL INSTITUTE

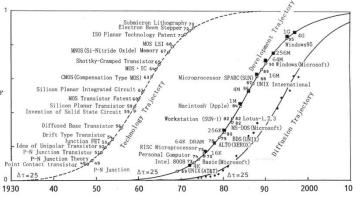
A FUTURE THAT WORKS: AUTOMATION, EMPLOYMENT, AND PRODUCTIVITY

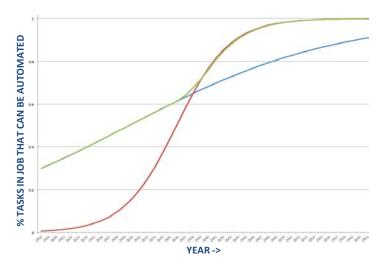
JANUARY 2017

"About half the activities people are paid almost \$15 trillion in wages to do in the global economy have the potential to be automated by adapting currently demonstrated technology, according to our analysis of more than 2,000 work activities across 800 occupations."

"The cost of technology, competition with labor including skills and supply and demand dynamics, performance benefits including and beyond labor cost savings, and social and regulatory acceptance will affect the pace and scope of automation."

From MGI, 2017



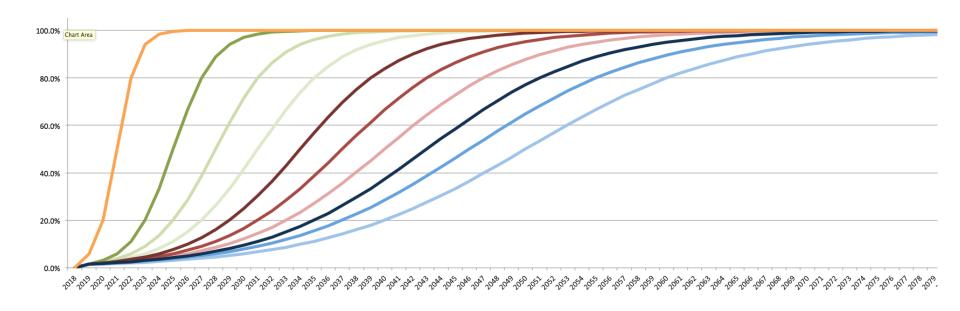

		TECHNICAL LIMITS						
Offshore Job Descriptions	NOC	McKinsey	Oxford	M+O	Full Automation			
Offshore installation manager	811	30%	15%	41%	2105			
Drilling Supervisor	811	30%	36%	55%	2066			
Toolpusher	8222	38%	17%	49%	2097			
Driller	8232	68%	77%	93%	2051			
Assistant Driller	8232	68%	77%	93%	2051			
Derrickman	8412	68%	77%	93%	2051			
Roughneck	8615	27%	37%	54%	2065			
Roustabout	8615	27%	37%	54%	2065			
Maintenance supervisor	7301	63%	68%	88%	2053			
Senior mechanic	7311	60%	63%	85%	2054			
Rig mechanic	7311	60%	63%	85%	2054			
Electrical technician	2241	23%	84%	88%	2050			
Assistant engineering/clerk	1452	78%	87%	97%	2049			
Motorman	7612	35%	88%	92%	2049			
Materials manager	113	36%	3%	38%	2371			
Crane operator	7371	85%	90%	99%	2049			
Radio operator	1525	40%	96%	98%	2048			
Medic	3112	31%	1%	31%	4038			
QHSE specialist	112	14%	1%	15%	3705			
Logistics technician	1215	22%	1%	23%	2752			
Geologist	2113	65%	63%	87%	2054			
Drilling engineer	2145	19%	16%	32%	2101			
Completions engineer	2145	19%	16%	32%	2101			
Completions equipment supervisor	8222	38%	17%	49%	2097			
Completions equipment technician	2232	23%	38%	52%	2064			
Cement pump operator	7611	35%	88%	92%	2049			
Well intervention supervisor	8222	38%	17%	49%	2097			
Datalogger	2145	19%	16%	32%	2101			
Mudlogger	8232	68%	77%	93%	2051			
Chef	6321	54%	10%	59%	2138			
Steward	6522	75%	35%	84%	2067			
Well test supervisor	8222	38%	17%	49%	2097			
Well test surface technician	8232	68%	77%	93%	2051			
Well tester	8232	68%	77%	93%	2051			
Electric line logging engineer	8232	68%	77%	93%	2051			
Electric line winch operator	8232	68%	77%	93%	2051			
Operations assistant/clerk	1411	61%	96%	98%	2048			
Production supervisor	8222	38%	17%	49%				
Production operator	8412	68%	77%	93%	2051			
Instrumentation technician	2243		67%	81%				

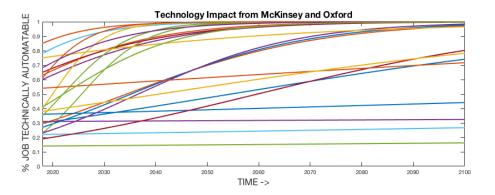
Occupations as per White Rose Extension Benefits Plan Amendment, Husky Energy (2014)

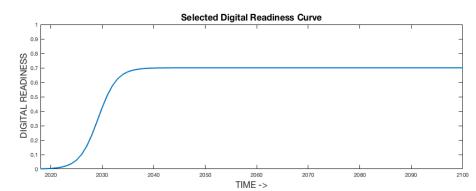
Offshore Occupations

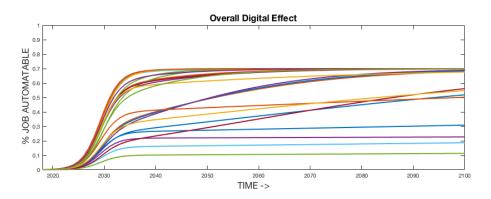
From Hirooka (2006), Innovation Dynamism and Economic Growth

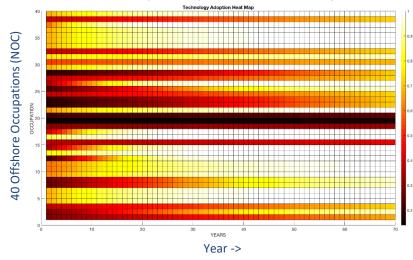
Technology Impact Heatmap

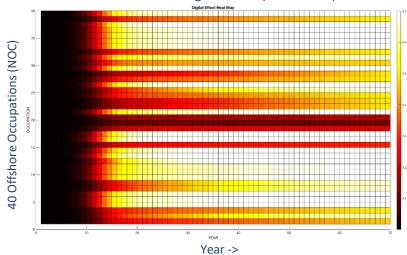

Offshore Job Descriptions	NOC	2018	2019	2020	2021	2022	2023	2024	2025	2026	2027	2028	2029	2030	2031	2032
Offshore installation manager	811	0.00000	0.01809	0.06220	0.15739	0.25558	0.30556	0.32478	0.33373	0.33989	0.34536	0.35067	0.35597	0.36130	0.36665	0.3720
Drilling Supervisor	811	0.00000	0.01817	0.06377	0.16467	0.27273	0.33235	0.35990	0.37657	0.39030	0.40336	0.41634	0.42938	0.44250	0.45571	0.4689
Toolpusher	8222	0.00000	0.02286	0.07834	0.19767	0.32011	0.38162	0.40450	0.41449	0.42096	0.42654	0.43190	0.43722	0.44254	0.44786	0.4532
Driller	8232	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Assistant Driller	8232	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Derrickman	8412	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Roughneck	8615	0.00000	0.01671	0.05890	0.15274	0.25406	0.31091	0.33808	0.35516	0.36957	0.38341	0.39722	0.41115	0.42521	0.43939	0.4536
Roustabout	8615	0.00000	0.01671	0.05890	0.15274	0.25406	0.31091	0.33808	0.35516	0.36957	0.38341	0.39722	0.41115	0.42521	0.43939	0.4536
Maintenance supervisor	7301	0.00000	0.03839	0.13318	0.33974	0.55562	0.66828	0.71393	0.73663	0.75263	0.76652	0.77947	0.79181	0.80361	0.81489	0.8256
Senior mechanic	7311	0.00000	0.03656	0.12684	0.32365	0.52950	0.63716	0.68109	0.70323	0.71907	0.73297	0.74605	0.75861	0.77072	0.78239	0.7936
Rig mechanic	7311	0.00000	0.03656	0.12684	0.32365	0.52950	0.63716	0.68109	0.70323	0.71907	0.73297	0.74605	0.75861	0.77072	0.78239	0.7936
Electrical technician	2241	0.00000	0.01539	0.05839	0.16230	0.28795	0.37397	0.42928	0.47350	0.51448	0.55428	0.59313	0.63078	0.66689	0.70113	0.7332
Assistant engineering/clerk	1452	0.00000	0.04741	0.16389	0.41633	0.67761	0.81068	0.86110	0.88309	0.89658	0.90719	0.91643	0.92472	0.93223	0.93903	0.9451
Motorman	7612	0.00000	0.02290	0.08494	0.23058	0.39937	0.50628	0.56731	0.61107	0.64878	0.68356	0.71610	0.74645	0.77456	0.80039	0.8239
Materials manager	113	0.00000	0.02142	0.07266	0.18143	0.29077	0.34311	0.36001	0.36522	0.36726	0.36850	0.36953	0.37050	0.37147	0.37243	0.3734
Crane operator	7371	0.00000	0.05134	0.17640	0.44555	0.72126	0.85853	0.90760	0.92666	0.93695	0.94441	0.95066	0.95613	0.96100	0.96535	0.9692
Radio operator	1525	0.00000	0.02672		0.27630	0.48170	0.61211	0.68503	0.73464	0.77460	0.80894	0.83883	0.86476	0.88706	0.90607	0.9221
Medic	3112	0.00000	0.01841	0.06230		0.24831	0.29241	0.30618	0.30997	0.31107	0.31147	0.31170	0.31189	0.31207	0.31224	0.3124
QHSE specialist	112	0.00000	0.00832	0.02821	0.07038	0.11271		0.13932	0.14123	0.14190	0.14227	0.14255	0.14282	0.14308	0.14334	0.1436
Logistics technician	1215	0.00000	0.01309	0.04438	0.11081	0.17755								0.22651		
Geologist	2113	0.00000	0.03944	0.13625	0.34627	0.56431	0.67654	0.72061	0.74150	0.75574	0.76796	0.77936	0.79025	0.80072	0.81079	0.8204
Drilling engineer	2145	0.00000	0.01160	0.04034	0.10327	0.16968	0.20521	0.22064	0.22932	0.23621	0.24271	0.24920	0.25576	0.26243	0.26921	0.2760
Completions engineer	2145	0.00000	0.01160	0.04034	0.10327	0.16968		0.22064	0.22932		0.24271			0.26243		0.2760
Completions equipment supervisor	8222	0.00000	0.02286	0.07834	0.19767	0.32011	0.38162	0.40450	0.41449	0.42096	0.42654	0.43190	0.43722	0.44254	0.44786	0.4532
Completions equipment technician	2232	0.00000	0.01435	0.05095	0.13315	0.22313	0.27507	0.30127	0.31874	0.33397	0.34882	0.36377	0.37895	0.39435	0.40996	0.4257
Cement pump operator	7611	0.00000	0.02290	0.08494	0.23058	0.39937	0.50628	0.56731	0.61107	0.64878	0.68356	0.71610	0.74645	0.77456	0.80039	0.8239
Well intervention supervisor	8222	0.00000	0.02286	0.07834	0.19767	0.32011	0.38162	0.40450	0.41449	0.42096	0.42654	0.43190	0.43722	0.44254	0.44786	0.4532
Datalogger	2145	0.00000	0.01160	0.04034	0.10327	0.16968	0.20521	0.22064	0.22932	0.23621	0.24271	0.24920	0.25576	0.26243	0.26921	0.2760
Mudlogger	8232	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Chef	6321	0.00000	0.03219	0.10934	0.27348	0.43901	0.51886	0.54527	0.55401	0.55797	0.56069	0.56310	0.56543	0.56773	0.57003	0.5723
Steward	6522	0.00000	0.04481	0.15258	0.38245	0.61521	0.72853	0.76703	0.78070	0.78757	0.79264	0.79720	0.80157	0.80585	0.81005	0.8141
Well test supervisor	8222	0.00000	0.02286	0.07834	0.19767	0.32011	0.38162	0.40450	0.41449	0.42096	0.42654	0.43190	0.43722	0.44254	0.44786	0.4532
Well test surface technician	8232	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Well tester	8232	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Electric line logging engineer	8232	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Electric line winch operator	8232	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Operations assistant/clerk	1411	0.00000	0.03876	0.13925	0.36572	0.61235	0.75031	0.81297	0.84749	0.87197	0.89176	0.90849	0.92278	0.93497	0.94535	0.9541
Production supervisor	8222	0.00000	0.02286	0.07834	0.19767	0.32011	0.38162	0.40450	0.41449	0.42096	0.42654	0.43190	0.43722	0.44254	0.44786	0.4532
Production operator	8412	0.00000	0.04161	0.14443	0.36854	0.60264	0.72449	0.77337	0.79710	0.81335	0.82709	0.83964	0.85133	0.86229	0.87256	0.8821
Instrumentation technician	2243	0.00000	0.02562	0.09109	0.23796	0.39818	0.48959	0.53422	0.56248	0.58592	0.60780	0.62895	0.64954	0.66957	0.68900	0.7077
Average time liberated		0%	3%	10%	26%	42%	51%	55%	56%	58%	59%	60%	61%	62%	63%	649
Potential productivity (compared to 2018)		100%	103%	111%	134%	173%	203%	220%	230%	237%	245%	252%	259%	266%	274%	2819



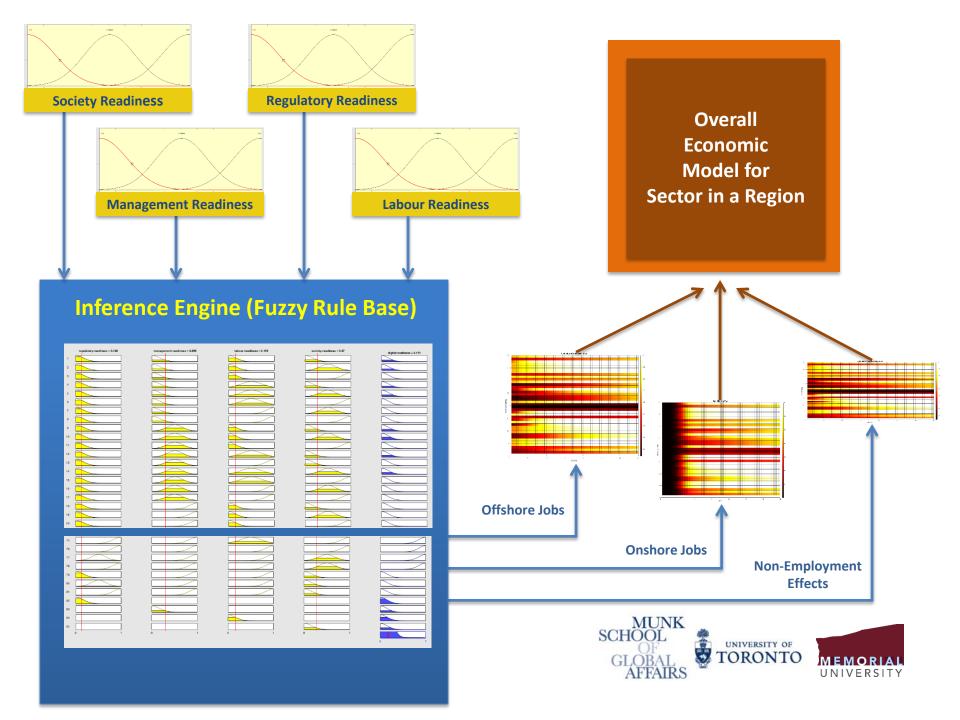

Digital Readiness Level - integration of non-technology factors

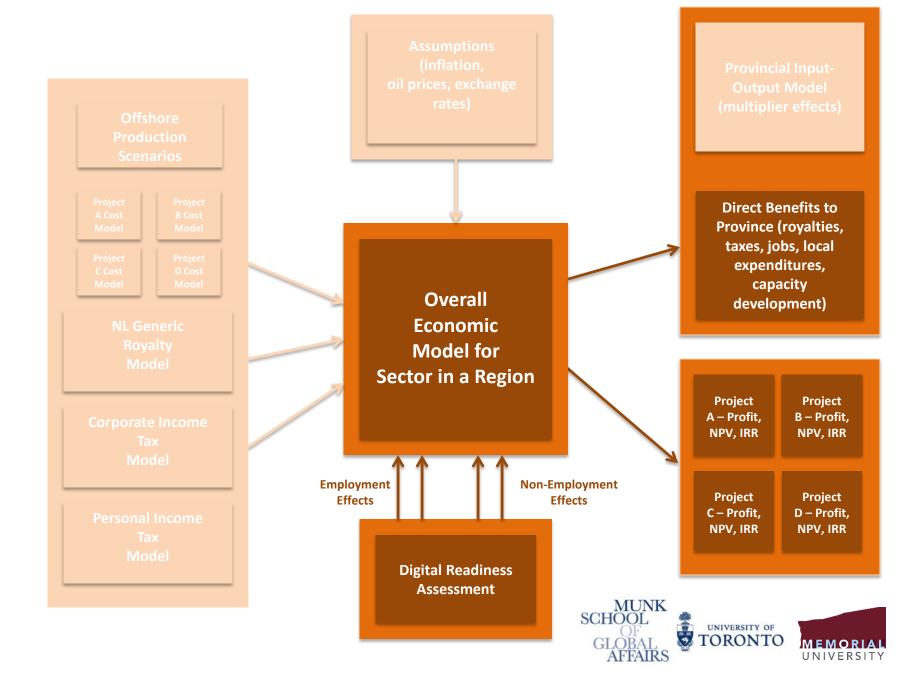

(regulatory, labour, education and training, corporate culture, supply chain, society, ...)

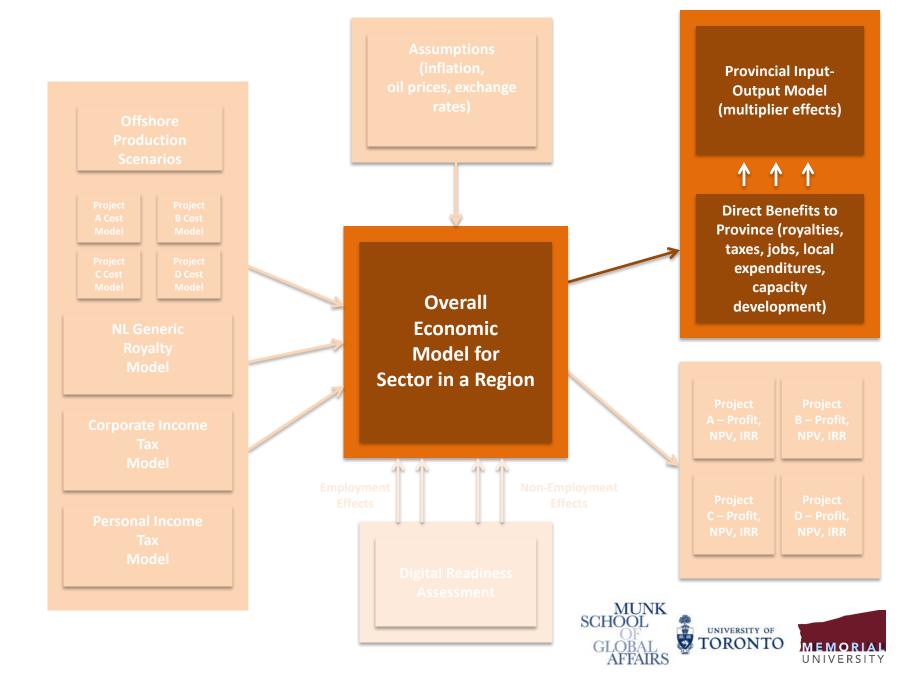




Impacts as per Oxford & McKinsey




Overall Digital Effect (Modulated)



Broader Economic Benefits: How will these be impacted by digitalization?

Table 3.1 Direct Impacts of Offshore Petroleum Industry, Newfoundland and Labrador, 2006-2014

idable of this part of office of this control in industry, the who difficulties and Education, 2000 2014									
	2006	2007	2008	2009	2010	2011	2012	2013	2014
Capital Costs (\$ Millions)									
Exploration	241.4	122.3	92.1	384.3	333.9	385.5	165.1	712.7	300.4
Development	2.3	54.4	252.9	449.9	177.1	568.0	1046.2	3,027.4	3,416.0
Production (Sustaining)	815.8	587.4	627.8	606.4	497.2	607.8	932.9	772.2	847.6
Total	1,059.5	764.1	972.8	1,440.6	1,008.2	1,561.3	2,144.2	4,512.3	4,564.0
Employment (person years)									
Development	15	100	326	328	352	467	1,069	4,414	6,565
Production	2,839	2,516	2,641	2,813	2,839	3,092	3,796	3,345	3,608
Total	2,854	2,616	2,967	3,141	3,191	3,559	4,865	7,759	10,173
Oil Production (millions of bbl)	110.8	134.5	125.2	97.7	100.7	97.3	72.2	83.6	78.9
Operating costs (\$ Millions)	621.0	602.7	701.4	707.1	686.9	694.0	730.1	758.0	844.8
Wages/Salaries & Employee Benefits (\$ Millions)									
Development	1.1	7.7	27.8	29.7	31.2	48.1	126.9	544.8	834.6
Production	317.3	270.9	289.1	324.8	336.9	368.7	485.0	456.5	528.1
Total	318.4	278.6	316.8	354.4	368.1	416.8	611.9	1,001.3	1,362.9

Table 3.2 Total Economic Impacts Related to the Offshore Petroleum Industry in Newfoundland and Labrador

Idbie 3.2 Ididi	CONOMIC	impacis	Kelatea t	o ine Olis	nore Perro	ieum ina	ustry in ive	ewtounde	ana ana L	aprador
	2006	2007	2008	2009	2010	2011	2012	2013	2014	Average
GDP (\$ Millions)	8,179	10,295	12,932	6,829	8,598	11,266	10,414	12,452	11,777	10,305
Share of Total (%)	36.4	36.9	43.6	29.5	31.8	35.8	34.4	37.0	36.1	35.7
Real GDP Chained (\$2007 Millions)	8,962	10,295	9,813	7,782	7,837	7,917	6,202	7,855	7,734	8,266
Share of Total (%)	35.1	36.8	35.3	31.2	29.8	29.2	23.8	28.2	28.6	30.9
Household Income (\$ Millions)	1,018	888	987	1,050	1,011	1,160	1,635	2,640	3,338	1,525
Share of Total (%)	6.2	5.4	6.0	6.0	5.6	5.9	7.9	12.0	14.5	7.7
Labour Income (\$ Millions)	763	666	740	788	759	870	1,226	1,980	2,503	1,144
Share of Total (%)	7.0	6.3	7.0	7.1	6.5	6.9	9.0	13.5	16.3	8.8
Other Income (\$ Millions)	254	222	247	263	253	290	409	660	834	381
Share of Total (%)	4.7	3.8	4.1	4.1	3.9	4.2	5.7	8.9	10.7	5.6
Disposable Income (\$ Millions)	788	677	741	799	770	877	1,238	2,000	2,528	1,158
Share of Total (%)	6.2	5.4	6.0	6.0	5.6	5.9	7.9	12.0	14.5	7.7
Retail Sales (\$ Millions)	442	379	415	448	431	491	693	1,120	1,416	648
Share of Total (%)	7.3	5.8	5.9	6.3	5.8	6.3	8.5	13.0	15.9	8.3
Housing Starts	144	122	130	140	131	145	200	317	394	191
Share of Total (%)	6.4	4.6	4.0	4.6	3.6	4.1	5.1	11.1	18.6	6.9
Employment (000s)	14.0	11.9	12.7	11.9	11.0	12.4	16.0	24.7	29.6	16.0
Share of Total (%)	6.5	5.5	5.7	5.5	5.0	5.3	6.6	10.2	12.4	7.0
Labour Force (000s)	11.0	9.3	9.8	9.8	9.3	10.4	13.3	18.1	21.5	12.5
Share of Total (%)	4.4	3.7	3.8	3.9	3.6	3.9	4.8	6.6	8.0	4.7
Unemployment Rate (%)	-1.9	-1.7	-1.8	-1.5	-1.2	-1.3	-1.6	-3.4	-4.3	-2.1
Population (000s)	18.3	15.4	16.3	16.4	15.6	17.3	22.2	30.1	35.9	20.8
Share of Total (%)	3.6	3.0	3.2	3.2	3.0	3.3	4.2	5.7	6.8	4.0

Concluding Remarks

- Opportunities include potential benefits of increased safety of workers, improved
 environmental performance, improved productivity and efficiency of operations,
 shortening time to production, and reducing capital/operating costs and increasing
 royalties and taxes.
- The challenges include impacts on **employment and nature of work**, securing talent with **required education and skills**, navigating more **complex relationships** among industry, governments and communities, innovating in a **highly regulated industry**, and integrating new technologies with **legacy operations** and processes.
- There is a need for a framework that lets all stakeholders consider the opportunities and challenges of digital technology for extractive industries.
 - Poor outcomes are likely in the absence of a 'big picture'.

Acknowledgements

Research Sponsors:

Petroleum Research Newfoundland and Labrador (PRNL), Atlantic Canada Opportunities Agency (ACOA), MITACS, Memorial University, Munk School of Global Affairs (Innovation Policy Lab)

Research Collaborators (to date):

Dr. Peter Warrian, Distinguished Research Associate, Munk School of Global Affairs, University of Toronto

Dr. Lesley James, Chevron Chair in Petroleum Engineering, Memorial University

Dr. George Mann, Professor of Engineering, Memorial University

Dr. Oscar de Silva, Assistant Professor of Engineering, Memorial University

Dr. Greg Jamieson, Clarice Chalmers Chair of Engineering Design, University of Toronto

Dr. Vidar Hepso, Professor, Norwegian University of Science and Technology & Statoil

Dr. Wade Locke, Professor of Economics, Memorial University

Dr. Thumeera Wanasinghe, Post-doctoral Fellow (Industrial Automation), Memorial University

Dr. Bui Petersen, Post-doctoral Fellow (Employment and Social Impacts), Memorial University

For background information see ...

