CHAIRE INNOVATION CRÉATION, DÉVELOPPEMENT ET COMMERCIALISATION DE L'INNOVATION

Adoption of digital and advanced technologies in Canada

Catherine Beaudry Pierre Therrien Georges Hage Polytechnique Montreal & ISED

Objectives of the project

- Explore new ways of analyzing survey data
 - Data mining with R
 - Predictive models with association rules
- Understand the effect of advanced technology adoption – often ICT-driven
 - On innovation performance
 - Output of firms adopting certain types of technologies

Methodology

Survey of Advanced Technologies (SAT) 2014

- 7912 firms surveyed on their adoption of advanced technologies
- 5 main families of technologies
 - Material Handling, Business Intelligence, Advanced Processing, Advanced Design, Green technologies

Association rules

OVATION

- Using R and the *apriori algorithm*, we calculate the most frequent occurrences of certain groups of technologies
- We predict which technologies will be adopted based on three measures: support, confidence and lift
 CHAIRE

Defining association rules measures

• Support(S) = $\frac{\text{Number of firms adopting both A and B}}{\text{Total number of firms}} = P(A \cap B)$

- (A) => {B} Proportion of firms that have adopted technologies A and B regardless of other technologies adopted. This number is between 0 and 1
- In this case, A is what we call the antecedent and B is what we call the consequent

• For example:

{A} => {B} with a support of 0.2 means that 20% of all firms in the survey have adopted at least technologies A and B

Defining association rules measures

\bigcirc Confidence(C) =	Number of firms with both A and B		$P(A \cap B)$
	Total number of firms with A		P(A)

(A) => {B} with a confidence of 0.8 means that if a company has adopted technology A, there is a 80% chance that it has also adopted technology B

The confidence measures the probability of a technology to be adopted so it ranges from 0 to 1 (or 0 to 100%)

Defining association rules measures

• Expected Confidence = $\frac{Number \ of \ firms \ with \ B}{Total \ number \ of \ firms} = P(B)$

• $Lift(L) = \frac{Confidence}{Expected Confidence} = \frac{P(A \cap B)}{P(A) \times P(B)}$

- The lift measures the interestingness of a rule
- Typically the lift can range from 0 to infinity but in practice, the lower and upper lift will vary from one rule to another
- In theory, we're looking for rules that have a lift greater than 1, which would mean that the confidence of this rule is greater than what's expected

6

The apriori algorithm - how does it work?

- Once we submit to R a CSV file of all the firms adoption choices, the *apriori* algorithm will compute and try to find association rules based on confidence and support thresholds
- The chronological order of the rules is important
 - (A) => {B} means that if a firm has adopted A first, what is the probability of adopting B
 - (B) => {A} means that if a firm has adopted B first, what is the probability of adopting B
- This distinction wasn't available in the survey but in reality, this difference makes sense

Results of the apriori algorithm

By family of advanced technologies

Advanced Material Handling, Supply Chain and Logistics technologies

Advanced Material Handling, Supply Chain and Logistics technologies

- Rules can be selected by support, confidence or lift. Lift must be greater than one for a rule to be valid
- Rules 6 and 7 are similar in terms of support and confidence, but we prefer rule 7 because the lift is higher

Rules	Description	S	С	L
1	ce => d	0.094	0.80	1.82
6	abce => d	0.053	0.87	1.96
7	acde => b	0.053	0.86	2.38

Advanced Business Intelligence technologies

Single adoption of technology is When we filter with the most popular amongst firms C>0,4 we obtain 86 rules Firms also adopt complementary technologies such as d,e and a,c 08 The graph shows us that they are less rules About 120 firms adopt all technologies - we expect to see and larger firms in this category if we use C>0.8 We decided to use 15 C>0.8 for our network analysis Most adopted technologies (exclusive) 0.5 500 400 300 200 01 0.2 0.3 0.4 05 support 100 0 a. Executive dashboards for data d. Software as a service (AaaS) and analytics and decision making cloud computing software b. Software for large scale data e. Infrastructure as a service (laaS) processing (e.g. Hadoop) and cloud computing hardware CHAIRE c. Live-stream processing technology or real-time monitoring

Adv Business Intelligence - 69 rules

Advanced Business Intelligence technologies

- Technologies c,d,e are a very popular choice as more than 13% of firms have adopted them together
- Rule 6 almost has a 100% confidence rate
- Rule 10 is similar to rule 6 and is more likely to happen because it has the higher lift

Rules	Description	S	С	L
2	ce => d	0.135	0.89	1.72
6	abce => d	0.053	0.98	1.90
10	abcd => e	0.053	0.81	2.49

INNOVATION

CHAIRE

Advanced Design and Information Control Technologies

- Firms prefer to adopt single technologies in this category
- Technology g is the most popular to combine with. Extranet is often used with other technologies

Most adopted technologies (exclusive)

Advanced Design and Information Control Technologies

- Technologies i j and h are completely separated from the rest of the network and it has the higher lift with 2.13.
- Virtual technologies and Resource planning usually go hand in hand as shown in rule 2.

Rules	Description	S	С	L
8	af => c	0.095	0.77	1.78
2	bc => a	0.053	0.90	1.82
6	ij => h	0.064	0.77	2.13

a. CAE, CAM, Virtual Product development

- b. Virtual manufacturing
- Enterprise Resource Planning (ERP)
- d. Manufacturing Execution System
- e. Software Integration of quality results
- f. Manufacturing Resource Planning
- g. Extranet and EDI
- Wireless communications for production
- i. Sensor network and integration
- j. Computer integrated manufacturing
- k. Automated systems for inspection
- I. Unmanned aerial system (drone)

Advanced Processing and Fabrication technologies

Advanced Processing and Fabrication technologies

- Technologies f g are completely isolated from the rest of the network and rule 1 has the higher lift with 4.21.
- Technology d (robots without sensing) is the most used in this network, with 5 rules

Rules	Description	S	С	L
8	ce => d	0.077	0.69	2.58
7	bd => e	0.062	0.77	1.61
1	g => f	0.055	0.75	4.21

INNOVATION

CHAIRE

- a. Flexible Manufacturing Cells or Systems
- b. Lasers used in material processing
- c. Robots with sensing or vision systemsd. Robots without sensing or vision
- systems
- e. 4-9 axis computer numerically controlled machinery
- f. Additive manufacturing/3D printing for plastics
- g. Additive manufacturing/3D printing for metals
- h. Additive manufacturing/3D printing for other than plastics or metals
- Automated machinery for sorting, transporting or assembling parts
 Plasma sputtering
- . Micro-manufacturing
- MEMS

Advanced Green technologies

- Firms prefer to adopt two or more technologies in this category
- A combination of all technology is a popular choice amongst firms. Water and waste technologies seem to go together often as well (c,d)

Most adopted technologies (exclusive)

d. Waste Technologies

When we filter with C>0,4 we obtain 15 rules

- The graph shows us that there are six at C>0.8
- In this case, we choose to use C>0.8 to get the most accurate rules

Advanced Green technologies

- The four technologies adopted together are a popular choice. Rule 2 shows almost 100% confidence rate.
- Only 1062 firms adopted green technologies but almost 17% of them adopted technologies a c and d, which is by far the highest S as showed in rule 3.

Rules	Description	S	С	L
3	ac => d	0.169	0.91	1.51
2	apc => q	0.109	0.97	1.61
6	apq => c	0.109	0.83	2.01

Effect on the adoption on innovation

Advanced Material Handling and Business Intelligence technologies

Advanced Material Handling, Supply Chain and Logistics technologies

2.00

a.	CRM software	

- b. Software for demand forecasting
- c. Transportation management system
- d. Warehouse Management System
- e. Supply chain collaboration

- Firms who adopt technologies a,b receive 3.5 times more funding from private VCs than firms who adopt other technologies. The same trend is seen in other sources of financing
- Technology c receives less funding than other technologies in all sources of financing
- Technology c when adopted has a negative effect on firms in terms of innovation. These firms are less likely to innovate

20

The adoption of technologies d,g and a,b have a positive impact on innovation

f. Automated Storage and Retrieval System
g. Automated bar/QR coding
h. RFID

Advanced Business Intelligence technologies

■a ■d ■c ■d,e ■a,c ■a,b,c,d,e ■a,d ■Other

■a ■d ■c ■d,e ■a,c ■a,b,c,d,e ■a,d ■Other

- a. Executive dashboards for data analytics and decision making
- b. Software for large scale data processing (e.g. Hadoop)
- c. Live-stream processing technology or real-time monitoring

- Firms who adopt technologies a,b,c,d,e and a,d receive more funding than firms who adopt other technologies, especially from private VCs.
- Technology c receives less funding than other technologies in all sources of financing
- All groups of technologies showed have an increased innovation performance when adopted compared to firms that adopt other technologies or nothing at all.

21

- Technology c only seems to have a positive effect on process innovations
- d. Software as a service (AaaS) and cloud computing software
- e. Infrastructure as a service (laaS) and cloud computing hardware

Conclusion and future research

- It is difficult to draw conclusions based on large networks. Therefore, we need to filter rules by using higher thresholds for support and confidence
- As a next step, regressions are needed understand which group of technologies have an effect on innovation performance
- Furthermore, experimentation is required to be able to use decision trees or neural networks to predict which technologies a firm should adopt to enhance its innovation performance based on key characteristics (R&D expenses, size, age, etc.)
- A similar analysis can be repeated with SAT 2007 data to do a survival and growth analysis

Questions

