Differential adoption of digital technology in the Canadian agriculture and mining sectors

Peter W.B. Phillips, Ph.D. Distinguished Professor of Public Policy **Brian Wixted**, Ph.D. Adjunct Professor

Centre for the Study of Science and Innovation Policy Johnson-Shoyama Graduate School of Public Policy Saskatoon, Canada

Is Canadian mining exploiting digital opportunities?

Who's right? Brian? Peter? Neither? Both?

Anchoring the discussion

A	griculture	Mining		
•	>\$100 B impact on GDP	•	\$56B impact on GDP	
•	2.1 million workers	•	373,000 workers	
•	Low wages	•	Highest wages of all sectors	
•	Top 4 global exporter	•	Global leader in potash and	
•	Top 5 exporter in most crops		second in uranium	
	and some animals	•	Top 5 in 11 other ores	
•	Most key technologies owned	•	3700 world class suppliers	
	and exploited by foreign	•	57% of global companies	
	owned MNEs		listed on TSX and 53% of	
			global equity raised in	
			Canada	
		•	Canadian owned MNEs	

The digital opportunity Agriculture Mining

Evidence of digital adoption

A	griculture	Mining
•	Heavy investment in research (albeit from low base) 49% of farmers use precision ag on entire farm; 37% on part of farm ~ 40% of total acres soil sampled & geo-tagged 98% use GPS guidance systems to apply 85% of fertilizer, 70% of chemicals and 26% of seed ~ 40% use remote imagery in-season to monitor crops (28% satellite & 19% captured drones) > 85% of combines use real-time monitoring ~ 66% use temperature and moisture sensors to monitor stored grain	 Geomatics industry thriving Some instrumentation being trailed One automated truck in operation in oil sands No automated transportation
1		

Why? Adoption theory says...

- Firms respond to new technology possibilities by:
 - Considering objective evidence of costs and benefits
 - Following Rogers' (2003) stages: awareness; persuasion; decision; implementation; and confirmation
- Business school does not dispute the economic model, but is concerned it has limited application:
 - Bower & Christenson (1995) assert consistent pattern in business is failure of leading companies to stay at the top of their industries when technologies or markets change
 - Possible factors: Sunk costs? Trailability? Scalability? Investment cycle? ...

Is there a need? Yes for both sectors but more for mining!

Annual average 1997-2007	Canada	AB	SK	MB
Agriculture & FFF – MFP				
Multifactor Productivity	2.44	4.07	1.01	2.87
Labour productivity	4.55	8.75	5.46	5.59
Capital Productivity	1.91	2.80	0.08	2.51
Mining and Oil & Gas Extraction				
Multifactor Productivity	-4.64	-6.10	-6.36	-1.11
Labour productivity	-1.56	-2.98	-4.52	2.05
Capital Productivity	-5.10	-6.90	-6.57	-2.72

Are there barriers to adoption of ICT?

2012	Firm	Private	Ag	Mining, oil
	size	sector		& gas
Unaware of new technologies	Total	16.4	20.1	5.8
Employee resistance to new	Total	9.6	11.5	17.6
technology				
Lack of technical expertise &	Total	29.5	54.5	12.6
skilled personnel in-house	Large	18.4		6.8
New systems incompatible	Large	18	61.8	5.5
with existing systems				
Security and/or privacy	Total	18.7	30.9	6.9
concerns				

Maybe firms are not spending on ICT?

Type ICT service	Size of	Private	Agriculture and	Mining, and
expense	firm	sector	FFH	oil and gas
Any	Total	51.5	29.9	51.6
expenditures on	Large	88.7	-	99.2
ICT services in				
the past 3 years				
Data processing	Total	7.5	6.1	1.6
services				
Database	Total	17.8	11.9	13.1
services	Large	54.7		91.1
Software as a	Total	18.3	3.3	25.7
service	Large	44.3	-	79.4
Web site design	All	31.4	19.3	-
or hosting	Large	69.3	-	93.4

Could it be firm strategy? % all firms reporting different innovations, 2007-09

Type of innovation:	Goods	Services	Process	Organization	Market
Mining & related activities	23.5	6.3	14.6	39.5	19.8
Oil, gas & drilling	6.4	0	8.7	20.9	2.9
Manufacturing	42.6	21.7	15.7	44.9	20.4
Food manufacturing	36.5	14.4	17.7	38.3	20.2
Services	25.3	27.7	14.7	30.9	31.3

Maybe firms are not investing in training?

Enterprises investing in ICT	Size of	Private	Mining,
training	firm	sector	quarrying, oil &
			gas extraction
Businesses with ICT/IT	Total	13.4	27.2
specialists as of Dec 2013			
Businesses with ICT/IT	Large	74.7	96.9
specialists as of Dec 2013			
Businesses with ICT/IT	Small	10.1	12.7
specialists as of Dec 2013			
Training for ICT/IT specialists	Large	73.5	95.3
Training for other staff using	Large	77.8	95.4
ICTs			

Table 358-0233 Survey of digital technology and Internet use, enterprises investing in Information and Communications Technology (ICT) training, by North American Industry Classification System (NAICS) and size of enterprise, occasional

Could it be poor incentives or supports?

- Preliminary GEM analysis in 2015 and 2016 of >75 ICT actors in engaged in Ag and Mining
- Shows relatively strong support for programs from entrepreneurs and industry
- Main people who have a poor view of the programs seem to be experts (in government and financial institutions)
- Not clear whether this is overconfidence of entrepreneurs and/or Dunning Kruger Effect

So, evidence so far suggests mining should be doing better than ag

	Preparedness	Research and	Technical	Adoption and
		Investment	Barriers	use
Agriculture				
Upstream	Above average	Moderate	Above average	Strong
Primary sector	Below average	Weak	Above average	Strong
Downstream	Below average	Weak	Above average	Moderate
Mining				\frown
Upstream	Above average	Weak	Below average	Weak
Primary sector	Average	Weak	Below average	Weak
Downstream	Above average	Weak	Below average	Weak

SHOYAMA

UREGINA 🤊 USASK

Innovation Policy

So, could the gap due to the industrial structure?

	Agriculture			Mining		
	Sub-sector	# firms	<i>C4</i>	Sub-sector	# firms	<i>C4</i>
Inputs	Seeds	>50	5-80%	Machinery	<10	>50%
	Chemicals	~5	>70%	Geomatics in W.	~525	<10%
	Machinery	~10	60%	Can Canada		
	IT firms	>100	>10%	IT firms	>100	<10%
Primary	Farmers	28,642	<1%	Potash mining	13	100%
producers				Uranium mining	30	100%
Marketing	Grain cos	~160	>75%	Potash	4	100%
	Processors	~30	<25%	Uranium	2	100%
Transport	Custom trucking	>250	<10%	Trucking	~10	>70%
	Rail (incl. shortline)	15	~100%	Rail	2	100%

Could it be the nature of the sectoral

investment cycles?

	Agriculture	Mining
Inputs	Annual	1-5 years
M&E	3-7 year amortization	15-40 year amortization
Technology	Trialable and scalable to most cropping systems	 3 systems have limited trialability and scalability: drilling (oil 70%; K20 25%) long-wall (K20 75%; U308 65%) open pit (oil 30%; K20 5%; U308 30%)

Special issues: Family farm? Social license and SLAs for mines?

Conclusions

- Don't assume firms irrational or not trying
 - Standard adoption theory addresses agricultural adoption of digital technologies quite well
 - ... BUT ...
 - fails to explain what is happening in mining
- Industrial structure, investment cycles, scalability and trialability and perhaps some discrete factors (such as social license and regional and FN offsets) must be considered as rational responses to DO pressures

JOHNSON SHOYAMA Centre for the Study of Science and Innovation Policy