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Abstract 
Over the last few decades, the importance of collaboration networks has increased in 
scientific research in a vast number of sectors. The ICT hardware industry is no exception 
and both firms and academic researchers are, for different reasons, seeking to establish 
partnerships. In recent literature, small-world network structure has shown optimal 
transmission properties. In this paper, using the Natural Sciences and Engineering 
Research Council of Canada data for a 10-year period (2003-2013), two sets of 
collaboration networks have been created: the first is composed solely of researchers 
while the second set adds partnering organizations, such as private firms, to the 
researchers’ collaboration network. Social network analysis is then used to measure 
various structure-related indicators of the two resulting networks. Our results show the 
presence of small-world properties suggesting an efficient knowledge transmission 
through the collaboration network. The important role of firms as central connectors in 
the networks is also highlighted. 
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1 Introduction 

Many industrial sectors face challenges from emerging economies, but none more so than 
the ICT hardware sector in western economies. New international innovation systems 
emerge, elaborated partnerships are being put in place with a vast number of 
organizations, and new innovation and intellectual property (IP) practices are developed. 
Microprocessors and electronic chips, components of the ICT hardware industry, are 
often considered General-Purpose Technologies (GPTs). According to(Bresnahan & 
Trajtenberg, 1995, p. 84), “[a]s a GPT evolves and advances it spreads throughout the 
economy, bringing about and fostering generalized productivity gains”. As such, R&D 
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investments in this particular sector are important because of their potential impact on the 
entire economy (society as an end user, pervasive use in other industries, etc.). This 
pervasiveness is a characteristic of the ICT hardware industry and makes it an important 
growth engine for economies. Since GPTs are connected to various segments of the 
economy, coordination problems has been an issue (Bresnahan & Trajtenberg, 1995). 
Furthermore, with the increasing complexity of products, and the necessity to accelerate 
the innovation process, collaboration is increasingly used to develop new applications for 
these technologies. 

This has led to the extensive use of networks by all firms. Networks are complex 
structures that are needed by firms to search for various sources of knowledge (Nieto & 
Santamaría, 2007; Tommaso Buganza & Roberto Verganti, 2009). Recent empirical 
studies have shown a close relationship between network structure and actors’ innovation 
performance (Grewal, Lilien, & Mallapragada, 2006; Phelps, 2010). Many of them have 
focused on the properties of small-world networks. Small-world networks are defined as 
clusters of locally dense interaction connected via occasional nonlocal bridging edges 
(Fleming, King, & Juda, 2007). A small-world network is typically highly clustered, yet 
have a small average path length (Watts & Strogatz, 1998). 
This paper focuses on the impact of the collaboration network structure linking 
companies, universities and governmental entities in the ICT hardware cluster of the 
province of Quebec, in Canada. More specifically, the study aims to determine whether 
the network has the characteristics of a small world and examine the implications of such 
a collaborative organisation.  

Two levels of networking are considered in this paper: First, we map the collaboration 
networks of academic researchers who raised funds from the Natural Science and 
Engineering Council of Canada (NSERC). Second, we add to these networks the 
collaboration links (from the industry/organisation-university collaborative NSERC 
grants) between the researcher leading the research project and the partners.  
Social network analysis of the individual scientist networks, excluding firms and other 
organisations, shows networks composed of multiple components (i.e. highly 
fragmented) based on specific ICT disciplines (photonics, quantum computing, 
telecommunications engineering, etc.), some of which correspond to small-world 
structures. In other words, within these components, information should flow faster. Yet, 
the disconnection between the components prevents information to flow directly through 
the entire networks and suggests the presence of non-filled structural holes. The second 
type of analysis, on the researchers-organisations networks, emphasizes the role of firms 
and other organisations as central actors in the networks and the clear presence of a 
small-world structure. 
The remainder of the paper is organised as follows: Section 2 reviews the relevant 
literature on collaboration and small worlds, Section 3 explains the methodology as well 
as the data available, Section 4 presents the results of the social network analysis and 
Section 5 discusses the main results and concludes. 
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2 Theoretical framework  
2.1 University–industry collaboration in the ICT hardware sector  
According to (Chesbrough, 2003), the ICT hardware industry, especially the 
semiconductor sector, is rich in terms of knowledge. This knowledge comes from various 
sources. It is however more and more difficult for firms to keep up with the rapid pace of 
innovation by taping only into their internal resources (Santoro & Chakrabarti, 2002). 
Firms must use additional sources of knowledge such as research centers, governmental 
laboratories, universities, industrial clusters and even rival firms. For example, hardware 
companies typically possess their own R&D facilities but work closely with universities 
on new materials. 

In the development of high technology products, like most of the ICT hardware products, 
the role of universities is crucial in the innovation process (Lee, 2000). From the 
university point of view, researchers have different reasons to collaborate with firms. 
According to (Lee, 2000), the main motivations of researchers are driven by the need to 
advance their research agenda. Specifically, the most significant factor is to secure funds 
for their graduate students and lab equipment. Second, researchers are interested in 
looking for insights on their research fields within companies R&D pipelines. From the 
firms’ point of view, on the one hand, universities generate a pool of talents from which 
firms can recruit researchers and other employees (engineers, technology managers, etc.). 
On the other hand, universities often receive specific mandates from private firms to 
work on research projects, most of which are focused on actual product development or 
prototyping, and thus close to commercialisation. However another reason why firms 
collaborate with universities, often cited by technology managers, is to conduct 
exploratory blue sky research (Lee, 2000). Indeed, firms less and less use their own 
resources to investigate far-fetched research hypotheses. In a world where Moore’s law is 
ruling, investing in new technology research is necessary to survive (Joe Tidd, 2002). 
Here, blue sky research must not be confounded with fundamental research with no 
specific application.  

(Santoro & Chakrabarti, 2002) further observe that large corporations in this sector tend 
to invest in research projects that are not always linked to their core business. Since GPTs 
by definition involve numerous spillover effects, firms are willing to explore new 
applications and increase the general level of knowledge in the field to benefit from 
future advances. For example, semiconductors companies like Qualcomm invest in areas 
like mobile computing and robotics because of their potential to become growth engines 
for them. Successful innovative firms have this capacity to absorb external knowledge 
and adapt to industry changes (Cohen & Levinthal, 1990)  

(Boschma, 2005) introduced the notion of proximities as an explanation of cluster 
formation and collaboration. It is often assumed that geographical proximity is a major 
factor explaining collaboration. A study conducted by (Ponds, Van Oort, & Frenken, 
2007) tested the hypothesis that collaboration between different kinds of organisations 
(firms, universities, government entities, etc.) is more geographically localised than 
collaboration between similar organisations, due to institutional proximity. The authors 
focused on science-based industries including ICT fields such as telecommunications, 
optics and semiconductors. Their main finding is that geographical proximity is more 
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relevant for collaboration between non-academic and academic organisations, such as 
university-industry collaboration, than for purely academic research collaboration. As an 
explanation, they suggest that geographical proximity is a way of overcoming the 
institutional differences between organisations.   

2.2 Research collaboration 
Collaboration between researchers is increasingly common, if not the norm. It is widely 
assumed, within the scientific community, that it is beneficial and that it should be 
encouraged (Katz & Martin, 1997). However, the concept of collaboration itself is not 
always clear and many definitions exist. For the sake of brevity, we do not enunciate 
these definitions but consider the one elaborated by (Laudel, 2002) where collaboration is 
defined as a set of research activities involving multiple actors linked by a functional 
purpose in order to achieve a research goal where everyone will satisfy their own 
interests. Hence collaborators do not have to share a common goal in order to work 
together.  

The recent rise in research collaboration can be explained by a number of motivational 
factors, the increasing cost of research being one. According to (Ziman, 1994), funding 
agencies even try to force researchers to collaborate and communicate in order to share 
the equipment and facilities, leading to cost reduction. The argument being that research 
budget has reached a limit. The increasing complexity of research, leading to 
specialisation and focused expertise is another reason to collaborate (Gordon, 1980). In 
fact, in specific fields or multidisciplinary projects, it is almost impossible, let alone 
highly time consuming and inefficient, for a single researcher to execute all the required 
activities.  
Other factors listed in the literature are the decreasing cost of communication (Kraut, 
Egido, & Galegher, 1988), political factors (Subramanyam, 1983) and emerging new 
fields where multiple disciplines are needed (Van Rijnsoever & Hessels, 2011). 
Nowadays, with the establishment of Internet, scientists can communicate more 
efficiently than ever. Moreover, affordable flights allow in-person interactions (Melin, 
2000), hence removing the necessity for geographic proximity, but emphasising the 
importance of social and cognitive proximity (Boschma, 2005). 

At a more micro level, in a study conducted by (Melin, 2000), researchers, when they 
look for a partnership, evoke the special competencies of potential collaborators as an 
important decision factor. Respondents further mention special data or equipment that 
fellow researchers could provide as an important consideration in this decision. 
Interestingly these factors come before social reasons (old friends, past collaboration, 
etc.) in terms of importance.  

2.3 Small-world network 
Watts and Strogatz introduced the small-world model in 1998. The frequent apparition of 
small-world in various types of networks (man-made, biological, ecological, 
technological, etc) has suggested that this specific structure offer a potent organizing 
mechanism for increasing performance (Uzzi, Amaral, & Reed-Tsochas, 2007). Scholars 
agree that this structure facilitates information diffusion through a network. The small-
world network enables dense and clustered relationships to coexist with distant and more 
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diverse links. The clustered part of the graph enables trust and close collaboration, while 
distant edges bring new information to the cluster (Fleming et al., 2007). 

(Cowan & Jonard, 2004) developed a model to study the efficiency of networks in a 
knowledge diffusion study and showed it was maximal when networks had small-world 
properties. A number of previous studies focused on the impact of a small-world structure 
on firms’ networks, investigating topics as firms’ performance and knowledge diffusion. 
For example, (Sullivan & Tang, 2012) mapped the inter-firm links of the American 
venture capital industry and evaluated the impact of its structure on the firms’ 
productivity. They observed a positive relation between small-world properties and 
productivity. In another study, (Schilling & Phelps, 2004) concentrated their efforts to 
determine the impact of small-world property on firms’ performance by looking at 
patents. Their work showed a positive effect due to the high clustering coefficient and 
short path length enabling companies to have access to new knowledge required for 
innovation.  

In the innovation literature, it is also argued that small-world networks foster creativity 
and increase innovation performance. However, no consensus exists regarding its impact 
on performance (Uzzi et al., 2007). In fact, an equal number of studies show that there is 
no direct impact of the small-world structure on actors’ performance (Fleming et al., 
2007; Fleming & Marx, 2006). 
On the individual level, many studies have also been conducted using co-authorship to 
characterise networks (Goyal, Van Der Leij, & Moraga-González, 2006; Newman, 2000). 
In these studies, small-world networks have been discovered in fields such as physics, 
mathematics, biology and economics. Co-authorship networks show a tendency toward a 
small-world structure (Ebadi & Schiffauerova, 2015). This previous work showed the 
important role of the best-connected actors in joining individuals and clusters in the 
networks. Also, the co-authorship pattern (team size, multidisciplinarity, etc.) is a 
significant factor to obtain small-world structure. Interestingly, there is an increased 
probability of having a small-world network when scientific disciplines are team oriented 
with large team sizes (Wuchty, Jones, & Uzzi, 2007). Hence, the presence of a small-
world structure is common for disciplines in which teamwork is typical.  

3 Data and methodology 
3.1 Data 
The data used for our research is the collaboration links from the Natural Sciences and 
Engineering Research Council (NSERC) funding programs from 1993 to 2013. It was 
collected via the NSERC website. The data corresponds to collaboration information 
linking industrial partners with leading academic researchers. On complementary files 
other data on collaboration gives the links between researchers for the same projects. 
More specifically it links the co-applicants (researchers) with the main researcher, the 
one applying for the grant. However, the co-applicants data was available only from year 
2003 so we will consider the 2003-2013 period for the study of research collaboration, 
which is the focus of this paper.  
The raw data contained information on all disciplines and fields. Thus, we had to filter 
the projects in order to keep only those related with ICT hardware. The first filter retained 
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ICT projects in general and we then sorted out software and services related collaborative 
research projects. These filters are easily applied due to NSERC data codification. 
Subsequently, the 2003-2013 database contained 6738 ICT hardware research projects 
and 751 researchers working in this field. 

3.2 Social network analysis 
A social network characterises the interactions between a set of individuals or 
organisations (groups of individuals). Social networks consist of nodes (or vertices) and 
edges (also called ties, links, or connections) that connect the nodes. In the case examined 
in this paper, nodes represent the individual actors that compose the networks and edges 
are the funding relationships between the actors. Social network analysis is widely used 
to study complex systems in various disciplines (biology, social sciences, to name a few). 
The techniques employed combine mathematical analysis with the visualisation of 
systems that facilitate the characterisation and understanding of different interactions 
(Krebs, 2004). This type of analysis has as primary goal the detection and interpretation 
of patterns amongst social links between group members. It offers a framework to test 
hypotheses and theories based on structured relationships with the help of mathematical 
measures and network structural properties (Nooy, Mrvar, & Batagelj, 2011). Recent 
studies have used social network analysis to understand collaboration linkages and the 
influence of an innovator’s network structure on its innovative performance (Bercovitz & 
Feldman, 2011; Rost, 2011).  

The visual representation of a network is called a graph. Graph theory and social network 
analysis employ various measures to describe the overall structure of the network but also 
to determine relative importance amongst the nodes. This paper will use a number of 
concepts, which are defined below: 

Giant component: largest connected subgraph (component), i.e. that contains the 
majority of nodes. The network is composed of numerous unconnected components. The 
largest the giant component, the less fragmented is the network. 
Actor degree centrality: number of ties associated with a particular node. Thus, for a 
simple undirected network it is also the number of adjacent neighbours of the node 
(Wasserman & Faust, 1994). This type of centrality is often interpreted as the immediate 
risk of a node for ‘catching’ what is flowing through the network, in our case: knowledge. 
Mathematically, the degree centrality CD(i) of a node i can be expressed by the equation 
(1). 

 𝐶! 𝑖 = 𝑥!"!  (1) 

Where xij is the value of the link, e.g. the number of times two nodes collaborated 
together, between i and j. In order to compare networks of different sizes, the degree 
centrality can be normalized by dividing it by the total number of ties within the network.  
Betweenness centrality: is a measure calculated for every node of the network. It 
measures the control that nodes have over paths in the graph. Typically, it favors nodes 
connecting communities (dense subnetworks). The idea is that an actor is central if it lies 
between others actors especially if it is positioned in the shortest path linking them 
(Wasserman & Faust, 1994). More specifically, it is calculated with equation (2) for a 
node i. 
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 𝑔 𝑖 = !!"(!)
!!"!!!!!  (2) 

Where σst is the total number of shortest paths from node s to node t and σst(i) is the 
number of them passing by node i. The value we are using in this paper is the normalized 
value of betweenness centrality defined by the value obtained with equation (2) divided 
by the maximum value observed in the graph. Hence, we always get an actor with a value 
of 1 and this node represents the most central one in terms of betweenness.  

Eigenvector centrality: measure the relative centrality of a node in a network. It assigns 
relative scores to all nodes in the network based on the principle that connections to high-
scoring nodes contribute more to the score of the node in question than equal connections 
to low-scoring nodes (Nooy et al., 2011). In fact, the assumption is that each node’s 
centrality is proportional to the sum of the centrality values of the nodes connected to it 
(Newman, 2004).  

Clustering coefficient: measure of the degree of interconnectivity in the neighbourhood 
of a node (Watts & Strogatz, 1998). In other words, it measures the extent to which one’s 
friends are also friends of each other. Two versions of this measure exist: the global and 
the local. The global version gives an overall indication of the clustering in the network, 
whereas the local clustering coefficient is designed to give an indication of the 
embeddedness of single nodes. For the same graph G described earlier, the local 
clustering coefficient (ccl) of a node i can be defined by the equation (3). 

 𝑐𝑐! 𝑖 = !"#$%& !" !"#$% !" !"#$!!"#$ !"##$!%$& !" !"#!$
!"#$%& !" !"#$% !" !"#$!!"#$

 (3) 

The clustering coefficient for the entire graph G, ccl(G), is the simple average of ccl(i) for 
all i within V. 
The second definition, the global clustering coefficient (ccg), also called transivity, was 
introduced by (Newman, Strogatz, & Watts, 2001). It is calculated by using equation (4). 

 𝑐𝑐! 𝐺 = !"#$%& !" !"#$%& !!!"#!!
!"#$%& !" !!!"#!!

 (4) 

Average path length: average number of edges along the shortest paths for all possible 
pairs of nodes in the network. It measures the efficiency of information diffusion within a 
network. Let d(i1, i2) represent the shortest distance between node i1 and node i2 in the 
graph G, where i1, i2 belong to V. Then, the average path length (lG) is calculated using 
equation (5). 

 𝑙! =
!

!(!!!)
∙ 𝑑 𝑖!, 𝑖!  !!!  (5) 

Small-world networks are characterised by a high clustering coefficient combined with a 
short average path length. In contrast, random graphs, where nodes are randomly 
connected, have short average path length and low clustering coefficient. Therefore, a 
way to determine if a graph has a small-world structure is to compare its properties to 
those of a random graph of the same size. Mathematically, equations (6) and (7) have to 
be respected. 

 !!
!!"
≈ 1   6   𝑎𝑛𝑑  !!! !

!!! !"
≫ 1  (7) 
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Where lrd and ccl(rd) are respectively the average path length and the local clustering 
coefficient of a random graph. We can combine the 2 equations to form the small-world 
variable, SW, defined by equation (8). Where, a high SW (much greater than 1) confirms 
the small-world structure. 

 𝑆𝑊 =
!!! !
!!! !"

!!
!!"

  (8) 

In the second phase, Gephi software was used to construct and visualize the collaboration 
networks of the researchers as well as measure the structural network and small-world 
variables. We used the complementary files on co-applicants to establish the 
collaboration links. If researcher A and researcher B were co-applicants with the 
academic principal investigator C for a given project we then assume the collaboration 
links A-C, B-C and A-B. However, for the researchers-organizations networks, we only 
considered the links between the academic leader C and the different industrial 
collaborators. We used 5-year moving windows over 2003-2013 periods. Therefore, we 
mapped 14 distinct undirected networks, 7 researchers networks and 7 researchers-
organizations networks. The structural properties of the 14 networks were measured by 
Gephi. 
The research collaboration networks we generated are highly disconnected. They are 
composed of many subgraphs (components). Component of a graph, or a network, is a 
sub-network in which all the nodes are interconnected, there is no isolated nodes. 
Therefore, in order to study the small-world phenomenon we had to consider only the 
largest component of the networks. This limitation is largely due to the fact that the 
average path length can be calculated for a connected graph. The use of the largest 
component to determine the small-world variable has been commonly used (e.g, (Baum, 
Shipilov, & Rowley, 2003; Uzzi & Spiro, 2005). The justification relies the fact that the 
main activities occur in the largest component, where we usually find the most influential 
actors.In our case, the composition of the largest components in our generated networks 
is shown in Figure 1. 

The largest components of our networks contain between 13% (for the 2005-2009 period) 
and 23% (2009-2013 period) of the nodes. For the first two periods (2003-2007 and 
2004-2008), the largest component represented about 55% of all the collaboration 
activity, i.e. the total number of edges in the network. Hence confirming that the main 
activities were occurring in this largest component. However, from the period 2005-2009, 
the proportion of collaboration in the largest component dropped to 15%. This is 
attributable to the fact that the second largest component has increased in size to overtake 
the largest component of the previous periods, as can be witnessed in Figure 2. The 
second largest component contains only between 5% and 7% of the researchers, but they 
represent up to 47% of the collaboration activity in the 2007-2011 period. A small-world 
analysis of the first and second largest section will be conducted in the next section. 
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Figure 1: Evolution of the composition of the largest component 

 

 
Figure 2: Evolution of the composition of the second largest component 

As an example, Figure 3 presents the graphical representations of the largest and second 
largest components for the 2008-2012 period compared to the full network. The network 
also appears highly fragmented, as there are multiple disconnected components of the full 
graph (Figure 3a). In fact, the period with the least components possesses 74 of them. 
This large number is due to a considerable number of one-time projects involving small 
teams of researchers. 
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Figure 3: a) 2008-2012 full network, b) its largest component and c) its second 

largest component2 

4 Network analysis 
4.1 Network size 
The size of the components is calculated by the number of actors involved in each of the 
5-year moving periods. According to Figure 4, the size of the largest component is almost 
constant, around 100 researchers, except for the 2005-2009 where it dropped to 59. This 
is explained by the splitting of the largest component in two distinct parts in the 2005-
2009 collaboration network. Figure 5 indeed shows that the largest component of the 
2005-2009 network represents only a small part of it (13% of the nodes, see Figure 1). 
 

                                                
2 In the graphs, the size of the node representing every network actor is a function of the number of 
partnerships in which it is involved. In other words, it depends on the number of links connected to the 
node itself. And, the number of partnerships between two players determines the size of the link between 
them. The different colors distinguish the province of the researcher’s university: Ontario (turquoise),  
Quebec (purple), Alberta (green), British Columbia (red), Nova Scotia (blue), Manitoba (dark green), 
Saskatchewan (orange), Newfoundland and Labrador (burgundy), New Brunswick (dark purple) and N/A 
(light pink).  
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Figure 4: Evolution of the size of the largest component 

 

 
Figure 5: 2005-2009 full network (left) and its largest component (right) 

 

Figure 6 illustrates, the evolution of the size of the second component. Starting at 
26 researchers, it reaches a maximum of 37 nodes during the 2006-2010 window before 
decreasing slightly to end up at 33 for the last studied period. In fact, in the 2005-2009 
collaboration network, the largest component of the previous network (2004-2008) split 
itself in two parts. The biggest part of the two became the new largest component of the 
2005-2009 network while the other part, the smallest of the two, became the second 
largest component. Hence, this shift pushed the second largest of the 2004-2008 at the 
third position in importance in the subsequent graphs. By further investigating the data, 
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we verified that from the 2005-2009 period the two largest components (first and second) 
were composed principally of the same main researchers.    

 
Figure 6: Evolution of the size of the second component  

4.2 Small-world analysis for research collaboration networks 
By definition, a network exhibits a small-world structure if it shows a higher clustering 
coefficient than a random network that possesses the same number of nodes while having 
approximately the same average path length. In order to compare our collaboration 
networks with random graphs, we used Gephi’s Erdos-Renyi random graph generator. 
Hence, a random graph the same size as the main component of the studied networks was 
created for each of the examined period. Then, their respective clustering coefficient and 
average path length were calculated and compared with those of the largest component 
networks. The results are showed in Figure 7 and Figure 8. 

 
Figure 7: Clustering coefficient of the collaboration and random networks 
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Figure 8: Average path length of the collaboration and random networks 

The clustering coefficient of research collaboration networks measures the extent to 
which a researcher’s collaborators are also collaborating with each other. Figure 7 shows 
that the clustering coefficient of the researchers network is significantly higher than the 
one of the random network. Moreover, it is almost constant and always higher than 0.7. 
This represents the first characteristic of small-worlds. 
According to Figure 8, the path length of the collaboration network shows a minimum 
during the 2005-2009 period. This is not surprising considering the smaller network size 
during this period (see Figure 5). With the exception of this point, the average path length 
for the NSERC network lies between 3.6 and 4.2 approximately, which is slightly higher 
than the path length of the random generated graphs. The graph also shows a decrease in 
the difference between the observed and random values. The main component of our 
collaboration network therefore seems to meet Watts and Strogatz’s small-world network 
criteria.  
To further analyze the small-world structure, we calculated the small-world variables 
(SW) for each examined period (see Table 1). According to Baum et al. (2003), the SW 
variable increases with the network size. However, we can observe that it increases 
throughout the periods even when the network size drops for the 2005-2009 period. Both 
the average path length and the clustering coefficient show trends towards a more typical 
small-world structure resulting in a value of 18.356 for the small world variable for 2009-
2013 period. Figure 4 showed that the network size seems to stagnate around 100 
researchers. As mentioned earlier, these researchers are mostly the same during the last 4 
periods, so it is coherent to think they created a more clustered environment where 
information flows more easily. 
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Table 1: Small-world properties for the largest component	

Period Network size l/l(rd) CC/CC(rd) SW 
2003-2007 100 1.597 13.438 8.413 
2004-2008 95 1.511 12.478 8.260 
2005-2009 59 1.217 10.955 9.000 
2006-2010 100 1.206 13.518 11.208 
2007-2011 99 1.208 20.450 16.925 
2008-2012 99 1.168 19.048 16.309 
2009-2013 113 1.274 23.382 18.356 

 
Table 2 presents the results of performing the same analysis for the second largest 
component of the networks. This second component shows small-world characteristics 
only during the first two periods. Afterwards, from 2005-2009 the component loses these 
properties as indicated by the low values of SW. Again this is due to the shift explained 
in Section 4.1. We are not looking at the same group of researchers in the first two 
periods. From the period 2005-2009 onward, the component shows a smaller path length 
than the random graph indicating a very tight network. On the other hand, the ratio 
between the clustering coefficient of the collaboration network and the one of the random 
graph is close to 1 and decreasing. 

 
Table 2: Small-world properties for the second largest component 

Period Network size l/l(rd) CC/CC(rd) SW 
2003-2007 26 0.774 14.850 19.193 
2004-2008 30 1.039 24.458 23.546 
2005-2009 35 0.894 1.932 2.160 
2006-2010 37 0.918 2.014 2.194 
2007-2011 36 0.894 1.696 1.896 
2008-2012 36 0.894 1.738 1.943 
2009-2013 33 0.835 1.543 1.848 

4.3 Small-world analysis for researchers-organisations collaboration 
networks 

In order to measure the impact of organisations within the NSERC collaboration 
networks, we added the relationships between the academic principal investigator 
(researcher) of the funded projects and the industrial partners. Once again we consider the 
largest component of the network for the small-world analysis. The direct effect, of 
adding an additional type of player in the network is an increase in the size of the main 
component as depicted in Table 3 and Figure 9. The addition of the links between the 
principal investigators and the organisations allows the connection between previously 
disconnected researchers sub-components, as depicted in Figure 9. 
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Figure 9: a) Largest component for the 2009-2013 researchers-organisations 

collaboration network (organisations are coloured in violet) and b) highlighted 
connections of an organisation within the network linking multiple subgroups of 

researchers 

 
To assess the role of the organisations, we measured their betweenness centrality. On 
Figure 10, we can see the evolution of the normalized betweenness centrality for a few of 
important players in the Canadian ICT scene.  
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Figure 10: Evolution of normalized betweenness centrality for key firms of the 

researchers-organisations network 

For every period, the most central node (value of 1) in terms of betweenness is a private 
firm, not a researcher neither a public organisation. Not surprisingly, Nortel Networks 
shows a decreasing value over the period attributable to its bankruptcy around 2009, 
being rapidly replaced in importance by Research in Motion, whose betweenness 
centrality increased from 0.4 for the 2003-2007 network to nearly 1 later in the period, 
ending as the most central node. For nearly all of the examined periods, Bell Canada is 
the most central actor (in terms of betweenness centrality).  
Performing the same analysis for public organisations, we obtained the values shown in 
Figure 11. Interestingly, throughout the period Industry Canada has taken a more central 
position (in terms of betweenness centrality), in contrast with the National Research 
Council (NRC) who shows a declining betweenness centrality. As Industry Canada is 
neither a technology developer nor a research Institute, further investigation in this regard 
is required.  
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Figure 11: Normalized betweenness centrality for key public organisations in the 

network 

Table 3 highlights the significant general increase in the value of the SW variable of the 
university-industry network compared to the values seen for the researchers collaboration 
networks (see Table 1). We can see the difference between the observed values in Figure 
12. According to the small-world theory, this suggests that firms have a key knowledge 
transmission/integration role.  

Table 3: Small-world properties for the largest component of the researchers-
organisations collaboration networks	

Period	 Network	size	 CC/CC(rd)	 l/l(rd)	 SW	
2003-2007	 493	 215.00	 1.06	 202.13	
2004-2008	 512	 138.67	 1.04	 133.74	
2005-2009	 542	 85.80	 1.13	 76.02	
2006-2010	 636	 71.50	 1.07	 66.74	
2007-2011	 669	 146.33	 1.24	 118.36	
2008-2012	 663	 49.00	 1.15	 42.70	
2009-2013	 687	 119.67	 1.11	 107.73	
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Figure 12: SW evolution for the two sets of networks (researchers only and 

researchers-organisations) 

5 Discussion and conclusion 
This paper focused on the research collaboration network of the Canadian researchers 
working in the ICT hardware field involved in projects funded by the Natural Sciences 
and Engineering Research Council of Canada. By adding the links between principal 
investigators and organizations, the network of researchers and firms showed a much 
greater cohesion. Our work investigated the existence of small-world structure in order to 
understand the collaboration mechanisms taking place in the network.  

Our results confirm the presence of a fairly stable small-world structure for the largest 
components of the collaboration networks for the examined periods. Indeed, they showed 
a high clustering coefficient compared to random networks of the same size, yet with a 
similar average path length. The network of the last period studied (2009-2013) had the 
highest small-world variable, exhibiting an increasing trend. Hence, the network becomes 
more connected over time, and the short path length suggests that knowledge exchange is 
easier.   
Our analysis also showed that the addition of the ties linking organizations to principal 
investigators provoked a small-world variable surge. Moreover, the largest component 
grew much larger and the firms established connections between various subgroups of 
researchers that would be otherwise stand alone components. Their role as connectors or 
intermediaries is highlighted by their high betweenness centrality.  

Our research has many limitations. First, the ICT hardware industry is hard to define 
because of the transcendent nature of ICT. It has multiple application fields and major 
research contributions come from various disciplines. For example, advances in quantum 
computing are largely due to mathematical algorithms. Therefore, there is without a 
doubt a source of error in our filters. Some of the projects contained in our database may 
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not be totally related to ICT hardware and vice-versa some hardware projects were 
probably wrongly taken off the initial database. Further research adding publications and 
patents to the database and to the networks should partly remedy this limitation by 
allowing a better classification of ICT researchers and of their collaborators, whether 
other researchers or organisations.  
The size of the researchers networks (the largest components) is another limitation. It is 
hard to determine the collaboration mechanisms of an entire network by analyzing only 
20% of it. However, this is something we could explore further. For example, the full 
network could be formed of other sub networks (third components, etc.) that possess 
small-world properties and we should investigate this question. The disconnections 
observed in the full researchers’ collaboration networks and the size of the largest 
components suggests a lack of interdisciplinarity, but more importantly that teams that 
apply for funds are rarely changing over time. It would be interesting to test this 
hypothesis in future work, but also to consider other means by which to measure 
collaboration. 
Covering more years could give a better historical trend. Unfortunately, data on co-
applicants was missing before 2003, but other collaboration indicators could remedy this 
lack of data. A longer time series would give a better understanding of the network 
evolution. 
Finally, the collaboration networks examined in this paper contained only NSERC data. 
Ideally, in addition to adding various other sources of collaboration, co-publishing and 
co-patenting for example, but also more informal collaboration, MITACS, NCEs and 
other funding sources should be added to the analysis, providing we can lay our hands on 
them. The next research objective will be to determine quantitatively the impact of this 
small-world structure on innovative performance.  
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