#### Collaboration networks and innovation in Canada's ICT Hardware Cluster

Catherine Beaudry and Melik Bouhadra Polytechnique Montréal

CDO Third Annual Network Conference April 26<sup>th</sup> 2016

# 2

#### Agenda

- Research context
- Small-world structure
- Research questions
- Methodology
  - Data
  - Social Network Analysis
  - Networks construction
- Results
  - NSERC Networks: Researchers collaboration
  - NSERC Networks: Researchers-organisations collaboration
- Conclusion and discussion
  - Next steps

#### Research context

- ICT hardware products, such as microprocessors, electronic chips and fiber optics, are considered General-Purpose Technologies (GPTs)
- Since GPTs are connected to various segments of the economy, coordination problems have been an issue (Bresnahan & Trajtenberg, 1995)
- With the increasing complexity of technologies and products, it has led to the extensive use of collaboration networks by researchers and firms



#### Small-world structure

- Introduced by Watts and Strogatz in 1998, the small-world structure facilitates information diffusion through a network
- It enables dense and clustered relationships to coexist with distant and more diverse links in a network regular small-world



# 5

#### Research questions

- At a researchers level, is the Canadian ICT hardware collaboration network characterized by a small-world structure?
- What is the impact of the industrial partnerships within the network on the collaboration dynamics?

Methodology

# 7

#### Data

- Collaboration links from the Natural Sciences and Engineering Research Council (NSERC) funding programs from 2003 to 2013
  - Links between academic principal investigator (PI) and co-applicants (researchers)
  - Links between PI and industrial partners (private firms and governmental organisations)

# 8

#### Social network analysis

 It offers a framework to test hypotheses and theories based on structured relationships with the help of mathematical measures and network structural properties (Nooy, Mrvar, & Batagelj, 2011)

#### Definitions

- Giant component: largest connected subgraph (component), i.e. that contains the majority of nodes
- Betweenness centrality (g): measures the control that nodes have over paths in the graph. Typically, it favours nodes connecting communities (dense subnetworks). For a node *i*:  $g(i) = \sum_{s \neq i \neq t} \frac{\sigma_{st}(i)}{\sigma_{st}}$ 
  - Where
    - $\sigma_{st}$  is the total number of shortest paths from node s to node t
    - $\sigma_{st}(i)$  is the number of shortest paths from node s to node t passing by node I
  - Normalized value w.r.t. the maximum value observed in the graph (most central node = 1)

### Definitions (con't)

- Clustering coefficient: measure of the degree of interconnectivity in the neighbourhood of a node (Watts & Strogatz, 1998)
  - Measures the extent to which one's friends are also friends of each other
  - For a graph G, the local clustering coefficient (cc<sub>i</sub>) of a node i can be defined by:

## $cc_{i}(i) = \frac{nb \text{ pairs of neighbours connected by edges}}{nb \text{ pairs of neighbours}}$

The clustering coefficient for the entire graph G, cc<sub>1</sub>(G), is the simple average of cc<sub>1</sub>(i) for all *i* within V

### Definitions (con't)

- Average path length: average number of edges along the shortest paths for all possible pairs of nodes in the network
  - Measures the efficiency of information diffusion within a network
  - If d(i<sub>1</sub>, i<sub>2</sub>) represent the shortest distance between node i<sub>1</sub> and node i<sub>2</sub> in the graph G, the average path length (I<sub>G</sub>) is calculated using:

$$l_G = \frac{1}{n(n-1)} \sum_{i \neq j} d(i_1, i_2)$$

### Definitions (con't)

- Small-world networks are characterised by a high clustering coefficient combined with a short average path length
  - A way to determine if a graph has a small-world structure is to compare its properties to those of a random graph of the same size

$$\frac{l_G}{l_{rd}} \approx 1$$
 and  $\frac{cc_l(G)}{cc_l(rd)} \gg 1$ 

Small-world variable (SW): a high SW (much greater than 1) confirms the small-world structure

$$SW = \frac{\frac{cc_l(G)}{cc_l(rd)}}{\frac{l_G}{l_{rd}}}$$

#### Networks construction

- Gephi software was used to construct and visualize the collaboration networks of the researchers as well as measure the structural network and small-world variables
- 5-year moving windows over 2003-2013 periods, resulting in 14 distinct undirected networks (7 researchers networks and 7 researchersorganizations networks)
- Measures are taken on the giant components because the networks are highly disconnected

### NSERC Networks: Research Collaboration

ICT Hardware related projects

#### Network composition



#### Example of the 2008-2012 network



Figure 3: a) 2008-2012 full network, b) its largest component and c) its second largest component

#### Network size (# of nodes)



Figure 4: Evolution of the size of the largest component

Figure 5: Evolution of the size of the second component

#### Small-world analysis



Figure 6: Clustering coefficient of the collaboration and random networks

Figure 7: Average path length of the collaboration and random networks

#### Small-world analysis (con't)

| Period    | Network size | l/l(rd) | CC/CC(rd) | SW     |
|-----------|--------------|---------|-----------|--------|
| 2003-2007 | 100          | 1.597   | 13.438    | 8.413  |
| 2004-2008 | 95           | 1.511   | 12.478    | 8.260  |
| 2005-2009 | 59           | 1.217   | 10.955    | 9.000  |
| 2006-2010 | 100          | 1.206   | 13.518    | 11.208 |
| 2007-2011 | 99           | 1.208   | 20.450    | 16.925 |
| 2008-2012 | 99           | 1.168   | 19.048    | 16.309 |
| 2009-2013 | 113          | 1.274   | 23.382    | 18.356 |

#### Table 1: Small-world properties for the largest component

The small-world properties of the giant component are increasing over time

#### Small-world analysis (con't)

| Period    | Network size | l/l(rd) | CC/CC(rd) | SW     |
|-----------|--------------|---------|-----------|--------|
| 2003-2007 | 26           | 0.774   | 14.850    | 19.193 |
| 2004-2008 | 30           | 1.039   | 24.458    | 23.546 |
| 2005-2009 | 35           | 0.894   | 1.932     | 2.160  |
| 2006-2010 | 37           | 0.918   | 2.014     | 2.194  |
| 2007-2011 | 36           | 0.894   | 1.696     | 1.896  |
| 2008-2012 | 36           | 0.894   | 1.738     | 1.943  |
| 2009-2013 | 33           | 0.835   | 1.543     | 1.848  |

#### Table 2: Small-world properties for the second largest component

The second component losts its small-world properties when changing composition during the 2005-2009 period NSERC Networks: Researchers-organisations Collaboration

ICT Hardware related projects

## Impact of adding industrial partnerships



Figure 9: a) Largest component for the 2009-2013 researchers-organisations collaboration network (organisations are coloured in violet) and b) highlighted connections of an organisation within the network linking multiple subgroups of researchers

#### Betweenness centrality (firms)



#### Figure 10: Evolution of normalized betweenness centrality for key firms of the researchers-organisations network

#### Betweenness centrality (public organisations)



Figure 11: Normalized betweenness centrality for key public organisations in the network

#### Small-world analysis

Table 3: Small-world properties for the largest component of theresearchers-organisations collaboration networks

| Period    | Network size | CC/CC(rd) | l/l(rd) | SW     |
|-----------|--------------|-----------|---------|--------|
| 2003-2007 | 493          | 215.00    | 1.06    | 202.13 |
| 2004-2008 | 512          | 138.67    | 1.04    | 133.74 |
| 2005-2009 | 542          | 85.80     | 1.13    | 76.02  |
| 2006-2010 | 636          | 71.50     | 1.07    | 66.74  |
| 2007-2011 | 669          | 146.33    | 1.24    | 118.36 |
| 2008-2012 | 663          | 49.00     | 1.15    | 42.70  |
| 2009-2013 | 687          | 119.67    | 1.11    | 107.73 |

Collaboration with firms emphasizes the small-world structure

#### SW comparison



Figure 12: SW evolution for the two sets of networks (researchers only and researchers-organisations)

### Conclusion and discussion

## 28

#### Conclusion

- Research collaboration networks are highly disconnected
- Giant component shows small-world properties leading to optimal information transfer
- Organisations (private and public) are highly central (in terms of betweenness) and allow a significant increase in SW value while connecting researchers sub-components

#### Next steps

- Adding collaboration data
  - Patents and publications
  - Mitacs collaboration links (access being negociated)
  - Intra-firm collaboration
- Determine the impact of network structure on innovative performance

Thank you

30